fstats_sampling.f90 Source File


Contents

Source Code


Source Code

module fstats_sampling
    use iso_fortran_env
    use linalg, only : sort
    use fstats_distributions
    implicit none
    private
    public :: box_muller_sample
    public :: rejection_sample
    public :: sample_normal_multivariate

    real(real64), parameter :: pi = 2.0d0 * acos(0.0d0)
    real(real64), parameter :: twopi = 2.0d0 * pi
    real(real64), parameter :: pi_f = 2.0 * acos(0.0)
    real(real64), parameter :: twopi_f = 2.0 * pi_f

    interface box_muller_sample
        !! Generates random, normally distributed values via the Box-Muller 
        !! transform.
        module procedure :: box_muller_sample_scalar
        module procedure :: box_muller_array
    end interface
contains
! ------------------------------------------------------------------------------
function box_muller_sample_scalar(mu, sigma) result(rst)
    !! Generates a pair of independent, standard, normally distributed
    !! random values using the Box-Muller transform.
    real(real64), intent(in) :: mu
        !! The mean of the distribution.
    real(real64), intent(in) :: sigma
        !! The standard deviation of the distribution.
    real(real64) :: rst(2)
        !! The pair of random values.

    ! Local Variables
    real(real64) :: u1, u2
    complex(real64) :: z

    ! Process
    call random_number(u1)
    call random_number(u2)
    z = sqrt(-2.0d0 * log(u1)) * sigma
    rst = [z * cos(twopi * u2) + mu, z * sin(twopi * u2) + mu]
end function

! ------------------------------------------------------------------------------
function box_muller_array(mu, sigma, n) result(rst)
    !! Generates an array of normally distributed random values sampled
    !! by the Box-Muller transform.
    real(real64), intent(in) :: mu
        !! The mean of the distribution.
    real(real64), intent(in) :: sigma
        !! The standard deviation of the distribution.
    integer(int32), intent(in) :: n
        !! The number of Box-Muller pairs to generate.
    real(real64), allocatable, dimension(:) :: rst
        !! A 2N-element array containing the N Box-Muller pairs.

    ! Local Variables
    integer(int32) :: i

    ! Process
    if (n < 1) then
        allocate(rst(0))
        return
    end if
    allocate(rst(2 * n))
    do i = 1, n
        rst(2*i-1:2*i) = box_muller_sample(mu, sigma)
    end do
end function

! ******************************************************************************
! REJECTION SAMPLING
! ------------------------------------------------------------------------------
function rejection_sample(tdist, n, xmin, xmax) result(rst)
    !! Uses rejection sampling to randomly sample a target distribution.
    class(distribution), intent(in) :: tdist
        !! The distribution to sample
    integer(int32), intent(in) :: n
        !! The number of samples to make.
    real(real64), intent(in) :: xmin
        !! The minimum range to explore.
    real(real64), intent(in) :: xmax
        !! The maximum range to explore.
    real(real64), allocatable, dimension(:) :: rst
        !! An N-element array containing the N samples from the 
        !! distribution.

    ! Parameters
    real(real64), parameter :: zero = 0.0d0
    real(real64), parameter :: c_start = 1.01d0

    ! Local Variables
    integer(int32) :: i, j, jmax
    real(real64) :: u, c, g, f, rng

    ! Quick Return
    if (n < 1) then
        allocate(rst(0), source = zero)
    end if

    ! Process
    i = 0
    j = 0
    jmax = min(1000 * n, huge(j))  ! Guard against insanity
    rng = xmax - xmin
    c = c_start
    allocate(rst(n), source = zero)
    do while (i <= n)
        ! Update the acceptance threshold
        call random_number(u)

        ! Sample from the proposal distribution
        call random_number(g)
        g = g * rng + xmin

        ! Sample the target distribution
        f = tdist%pdf(g)

        ! Test
        if (u <= f / (c * g)) then
            i = i + 1
            rst(i) = g
        end if

        ! Update C
        c = max(c, f / g)

        ! Update the infinite loop guard variable
        j = j + 1
        if (j == jmax) exit
    end do
end function

! ******************************************************************************
! MULTIVARIATE SAMPLING
! ------------------------------------------------------------------------------
function sample_normal_multivariate(dist) result(rst)
    !! Samples a multivariate normal distribution such that \(\vec{x} = 
    !! \vec{mu} + L \vec{u}\), where \(L\) is the lower form of the Cholesky 
    !! factorization of the covariance matrix, and \(\vec{u}\) is a randomly 
    !! generated vector that exists on the set \([-1 1]\)
    class(multivariate_normal_distribution), intent(in) :: dist
        !! The multivariate normal distribution to sample.
    real(real64), allocatable, dimension(:) :: rst
        !! The resulting vector.

    ! Local Variables
    integer(int32) :: n
    real(real64), allocatable, dimension(:) :: u
    real(real64), allocatable, dimension(:,:) :: L

    ! Initialization
    L = dist%get_cholesky_factored_matrix()
    n = size(L, 1)
    allocate(u(n))
    call random_number(u)   ! populating u from [0, 1].
    u = 2.0d0 * (u - 0.5d0) ! centering u around 0 over the range [-1, 1]

    ! Process
    rst = dist%get_means() + matmul(L, u)
end function

! ------------------------------------------------------------------------------
end module