Derived Types

TypeLocationExtendsDescription
anova_factorfstats_anovaNone

Defines an ANOVA factor result.

array_containerfstats_typesNone

Provides a container for a real-valued array. A practical use of this construct is in the construction of jagged arrays.

base_interpolatorfstats_interpNone

A base object for interpolation.

binomial_distributionfstats_distributionsdistribution

Defines a binomial distribution. The binomial distribution describes the probability p of getting k successes in n independent trials.

bootstrap_statisticsfstats_bootstrapNone

A collection of statistics resulting from the bootstrap process.

chain_builderfstats_mcmcNone

A type allowing for the construction of chain of values.

chi_squared_distributionfstats_distributionsdistribution

Defines a Chi-squared distribution.

convergence_infofstats_regressionNone

Provides information regarding convergence status.

distributionfstats_distributionsNone

Defines a probability distribution.

doe_modelfstats_experimental_designNone

A model used to represent a design of experiments result. The model is of the following form.

Read more…
f_distributionfstats_distributionsdistribution

Defines an F-distribution.

hermite_interpolatorfstats_interpbase_interpolator

Defines a type meant for performing Hermite-type interpolation. The interpolating polynomial constructed by this object is a global polynomial, not a piecewise polynomial. Given N data points, the polynoial will be of degree 2 * N - 1. As N increases, the interpolating polynomial may be liable to oscillations that do not properly represent the data. For large data sets, a piecewise polynomial approach is recommended. See either the polynomial_interpolator or spline_interpolator types.

Read more…
iteration_controlsfstats_regressionNone

Provides a collection of iteration control parameters.

linear_interpolatorfstats_interpbase_interpolator

Defines a type meant for performing piecewise linear interpolation.

lm_solver_optionsfstats_regressionNone

Options to control the Levenberg-Marquardt solver.

log_normal_distributionfstats_distributionsdistribution

Defines a normal distribution.

mcmc_proposalfstats_mcmcNone

Defines a type responsible for generating a proposal state for a Monte-Carlo, Markov-Chain sampler.

mcmc_samplerfstats_mcmcchain_builder

An implementation of the Metropolis-Hastings algorithm for the generation of a Markov chain.

mcmc_targetfstats_mcmcNone

Defines a model of the target distribution(s). This type is key to the MCMC regression process. The approach taken is to evaluate the model provided here and evaluating its likelihood. The likelihood is evaluated by computing the residual between the model and data, and making the assumption that the residual should be normally distributed.

Read more…
multivariate_distributionfstats_distributionsNone

Defines a multivariate probability distribution.

multivariate_normal_distributionfstats_distributionsmultivariate_distribution

Defines a multivariate normal (Gaussian) distribution.

normal_distributionfstats_distributionsdistribution

Defines a normal distribution.

poisson_distributionfstats_distributionsdistribution

Defines a Poisson distribution.

polynomial_interpolatorfstats_interpbase_interpolator

Defines a type meant for performing piecewise polynomial interpolation.

regression_statisticsfstats_regressionNone

A container for regression-related statistical information.

single_factor_anova_tablefstats_anovaNone

Defines a single-factor ANOVA results table.

spline_interpolatorfstats_interpbase_interpolator

Defines a type meant for performing cubic spline interpolation.

t_distributionfstats_distributionsdistribution

Defines Student's T-Distribution.

two_factor_anova_tablefstats_anovaNone

Defines a two-factor ANOVA results table.