Derived Types

TypeLocationExtendsDescription
anova_factorfstats_anovaNone

Defines an ANOVA factor result.

array_containerfstats_typesNone

Provides a container for a real-valued array. A practical use of this construct is in the construction of jagged arrays.

binomial_distributionfstats_distributionsdistribution

Defines a binomial distribution. The binomial distribution describes the probability p of getting k successes in n independent trials.

bootstrap_statisticsfstats_bootstrapNone

A collection of statistics resulting from the bootstrap process.

chi_squared_distributionfstats_distributionsdistribution

Defines a Chi-squared distribution.

convergence_infofstats_regressionNone

Provides information regarding convergence status.

distributionfstats_distributionsNone

Defines a probability distribution.

doe_modelfstats_experimental_designNone

A model used to represent a design of experiments result. The model is of the following form.

Read more…
f_distributionfstats_distributionsdistribution

Defines an F-distribution.

iteration_controlsfstats_regressionNone

Provides a collection of iteration control parameters.

lm_solver_optionsfstats_regressionNone

Options to control the Levenberg-Marquardt solver.

log_normal_distributionfstats_distributionsdistribution

Defines a normal distribution.

mcmc_regressionfstats_mcmc_fittingmetropolis_hastings

The mcmc_regression type extends the metropolis_hastings type to specifically target regression problems. The problem is formulated such that the target distribution takes the form , where is a normal distribution with as the mean and the model variance, is determined by computing the variance for the current estimate of the model.

metropolis_hastingsfstats_mcmcNone

An implementation of the Metropolis-Hastings algorithm for the generation of a Markov chain. This is a default implementation that allows sampling of normally distributed posterior distributions centered on zero with unit standard deviations. Proposals are generated from a multivariate normal distribution with an identity covariance matrix and centered on zero. To alter these sampling and target distributions simply create a new class inheriting from this class and override the appropriate routines.

multivariate_distributionfstats_distributionsNone

Defines a multivariate probability distribution.

multivariate_normal_distributionfstats_distributionsmultivariate_distribution

Defines a multivariate normal (Gaussian) distribution.

normal_distributionfstats_distributionsdistribution

Defines a normal distribution.

regression_statisticsfstats_regressionNone

A container for regression-related statistical information.

single_factor_anova_tablefstats_anovaNone

Defines a single-factor ANOVA results table.

t_distributionfstats_distributionsdistribution

Defines Student's T-Distribution.

two_factor_anova_tablefstats_anovaNone

Defines a two-factor ANOVA results table.