module fstats_allan use iso_fortran_env use fstats_errors implicit none private public :: allan_variance contains ! ------------------------------------------------------------------------------ ! REF: Yadav, Shrikanth & Shastri, Saurav & Chakravarthi, Ghanashyam & Kumar, ! Viraj & Rao, Divya & Agrawal, Vinod. (2018). A Fast, Parallel Algorithm for ! Fully Overlapped Allan Variance and Total Variance for Analysis and Modeling ! of Noise in Inertial Sensors. IEEE Sensors Letters. PP. 1-1. ! 10.1109/LSENS.2018.2829799. ! ! https://www.researchgate.net/publication/324738301_A_Fast_Parallel_Algorithm_for_Fully_Overlapped_Allan_Variance_and_Total_Variance_for_Analysis_and_Modeling_of_Noise_in_Inertial_Sensors ! https://github.com/shrikanth95/Fast-Parallel-Fully-Overlapped-Allan-Variance-and-Total-Variance/blob/master/fast_FOAV.m function allan_variance(x, dt, err) result(rst) !! Computes the Allan variance of a data set. !! !! Remarks !! !! This implementation computes the fully overlapped Allan variance !! using the method presented by Yadav et. al. !! !! Yadav, Shrikanth & Shastri, Saurav & Chakravarthi, Ghanashyam & Kumar, !! Viraj & Rao, Divya & Agrawal, Vinod. (2018). A Fast, Parallel Algorithm !! for Fully Overlapped Allan Variance and Total Variance for Analysis and !! Modeling of Noise in Inertial Sensors. IEEE Sensors Letters. PP. 1-1. !! 10.1109/LSENS.2018.2829799. real(real64), intent(in), dimension(:) :: x !! The N-element data set to analyze. real(real64), intent(in), optional :: dt !! An optional input specifying the time increment between !! samples in x. If not specified, this value is set to 1. class(errors), intent(inout), optional, target :: err !! A mechanism for communicating errors and warnings to the !! caller. Possible warning and error codes are as follows. !! - FS_NO_ERROR: No errors encountered. !! - FS_MEMORY_ERROR: Occurs if there is a memory allocation !! error. real(real64), allocatable, dimension(:,:) :: rst !! An M-by-2 array containing the results where M is N / 2 - 1 !! if N is even; else, M is (N - 1) / 2 - 1 if N is odd. The !! first column contains the averaging times associated with !! the M results stored in the second column. ! Local Variables class(errors), pointer :: errmgr type(errors), target :: deferr integer(int32) :: flag, j, m, n, limit, nr real(real64), allocatable, dimension(:) :: tall1, tall2 real(real64) :: temp, deltaT ! Initialization if (present(err)) then errmgr => err else errmgr => deferr end if if (present(dt)) then deltaT = dt else deltaT = 1.0d0 end if ! Initialization n = size(x) limit = n nr = floor(0.5 * n) - 1 allocate(tall1(n - 1), source = x(:n-1), stat = flag) if (flag == 0) allocate(tall2(n - 1), source = x(2:n)) if (flag == 0) allocate(rst(nr, 2), source = 0.0d0) if (flag /= 0) go to 10 ! Process do m = 1, nr temp = 0.0d0 do j = 1, limit - 1 temp = temp + (tall2(j) - tall1(j))**2 tall1(j) = tall1(j) + x(min(n, m + j)) tall2(j) = tall2(min(n - 1, j + 1)) + x(min(n, 2 * m + j + 1)) end do limit = limit - 2 rst(m,1) = dt * m rst(m,2) = temp / (2.0d0 * (n - 2 * m + 1) * m**2) end do ! End return ! Memory Error Handling 10 continue call report_memory_error(errmgr, "allan_variance", flag) return end function ! ------------------------------------------------------------------------------ end module