Computes Bartlett's test statistic and associated probability.
The statistic is calculated as follows.
Where and is the pooled variance.
The probability is calculated as the right-tail probability of the chi-squared distribution.
Bartlett's test is most relevant for distributions showing strong normality. For distributions lacking strong normality, consider Levene's test instead.
See Also
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
type(array_container), | intent(in), | dimension(:) | :: | x |
The arrays of data to analyze. |
|
real(kind=real64), | intent(out) | :: | stat |
The Bartlett's test statistic. |
||
real(kind=real64), | intent(out) | :: | p |
The probability value that the variances of each data set are equivalent. A low p-value, less than some significance level, indicates a non-equivalance of variances. |