dynamics_controls.f90 Source File


Contents

Source Code


Source Code

module dynamics_controls
    use iso_fortran_env
    use nonlin_polynomials
    use ferror
    use ieee_arithmetic
    use dynamics_error_handling
    use diffeq
    implicit none
    private
    public :: polynomial
    public :: state_space
    public :: transfer_function
    public :: operator(*)
    public :: lti_solve
    public :: ss_excitation
    public :: ode_integrator

! ------------------------------------------------------------------------------
    type state_space
        !! Defines a state-space representation of a dynamic system.  This
        !! implementation takes the form:
        !!
        !! $$ \dot{x}(t) = A(t) x(t) + B(t) u(t) $$
        !! $$ y(t) = C(t) x(t) + D(t) u(t) $$
        !!
        !! Where:
        !! 
        !! - \( t \) denotes time.
        !!
        !! - \( x(t) \) is the state vector.
        !!
        !! - \( u(t) \) is the input vector.
        !!
        !! - \( y(t) \) is the output vector.
        real(real64), allocatable, dimension(:,:) :: A
            !! The N-by-N dynamics matrix, where N is the number of state
            !! variables.
        real(real64), allocatable, dimension(:,:) :: B
            !! The N-by-M input matrix, where M is the number of inputs.
        real(real64), allocatable, dimension(:,:) :: C
            !! The P-by-N output matrix, where P is the number of outputs.
        real(real64), allocatable, dimension(:,:) :: D
            !! The P-by-M feedthrough matrix.
    end type

! ------------------------------------------------------------------------------
    type transfer_function
        !! Defines a transfer function for a continuous system of the form
        !! \( H(s) = \frac{Y(s)}{X(s)} \).
        type(polynomial) :: Y
            !! The numerator polynomial \(Y(s)\) in 
            !! \( H(s) = \frac{Y(s)}{X(s)} \).  The polynomial coefficients
            !! are stored in acending order such that 
            !! \( y_1 + y_2 s + y_3 s^2 ... \).
        type(polynomial) :: X
            !! The denominator polynomial \(X(s)\) in 
            !! \( H(s) = \frac{Y(s)}{X(s)} \).  The polynomial coefficients
            !! are stored in acending order such that 
            !! \( x_1 + x_2 s + x_3 s^2 ... \).
    contains
        procedure, private :: tf_init_poly
        procedure, private :: tf_init_array
        generic, public :: initialize => tf_init_poly, tf_init_array
        procedure, private :: tf_eval_s
        procedure, private :: tf_eval_omega
        generic, public :: evaluate => tf_eval_omega, tf_eval_s
        procedure, public :: poles => tf_poles
        procedure, public :: zeros => tf_zeros
        procedure, public :: to_ccf_state_space => tf_to_ccf_statespace
        procedure, public :: to_ocf_state_space => tf_to_ocf_statespace
    end type

! ------------------------------------------------------------------------------
    interface operator(*)
        module procedure :: tf_tf_mult
        module procedure :: poly_tf_mult
        module procedure :: tf_poly_mult
        module procedure :: tf_scalar_mult
        module procedure :: scalar_tf_mult
    end interface

! ------------------------------------------------------------------------------
    interface
        subroutine ss_excitation(t, u, args)
            !! A routine for computing the excitation vector for a state-space
            !! model.
            use iso_fortran_env, only : real64
            real(real64), intent(in) :: t
                !! The time value at which to compute the excitation.
            real(real64), intent(out), dimension(:) :: u
                !! The excitation vector.
            class(*), intent(inout), optional :: args
                !! An optional argument used to pass objects in and out of the
                !! routine.
        end subroutine
    end interface

! ------------------------------------------------------------------------------
! PRIVATE TYPES
! ------------------------------------------------------------------------------
    type argument_container
        procedure(ss_excitation), pointer, nopass :: excitation
        class(*), allocatable :: user_args
        logical :: has_user_args
        type(state_space) :: model
    end type

contains
! ******************************************************************************
! TRANSFER_FUNCTION
! ------------------------------------------------------------------------------
subroutine tf_init_poly(this, y, x)
    !! Initializes a new transfer function.
    class(transfer_function), intent(inout) :: this
        !! The transfer_function object.
    class(polynomial), intent(in) :: y
        !! The numerator polynomial \(Y(s)\) in 
        !! \( H(s) = \frac{Y(s)}{X(s)} \).
    class(polynomial), intent(in) :: x
        !! The denominator polynomial \(X(s)\) in 
        !! \( H(s) = \frac{Y(s)}{X(s)} \).

    ! Process
    call this%Y%initialize(y%get_all())
    call this%X%initialize(x%get_all())
end subroutine

! ------------------------------------------------------------------------------
subroutine tf_init_array(this, y, x)
    !! Initializes a new transfer function.
    class(transfer_function), intent(inout) :: this
        !! The transfer_function object.
    real(real64), intent(in), dimension(:) :: y
        !! The numerator polynomial \(Y(s)\) in 
        !! \( H(s) = \frac{Y(s)}{X(s)} \).  The polynomial coefficients
        !! are stored in acending order such that 
        !! \( y_1 + y_2 s + y_3 s^2 ... \).
    real(real64), intent(in), dimension(:) :: x
        !! The denominator polynomial \(X(s)\) in 
        !! \( H(s) = \frac{Y(s)}{X(s)} \).  The polynomial coefficients
        !! are stored in acending order such that 
        !! \( x_1 + x_2 s + x_3 s^2 ... \).

    ! Process
    call this%Y%initialize(y)
    call this%X%initialize(x)
end subroutine

! ------------------------------------------------------------------------------
pure elemental function tf_eval_s(this, s) result(rst)
    !! Evaluates the transfer function at the specified value of the
    !! Laplace variable \(s\).
    class(transfer_function), intent(in) :: this
        !! The transfer_function object.
    complex(real64), intent(in) :: s
        !! The Laplace variable at which to evaluate the transfer function.
    complex(real64) :: rst
        !! The value of the transfer function.

    ! Process
    rst = this%Y%evaluate(s) / this%X%evaluate(s)
end function

! ------------------------------------------------------------------------------
pure elemental function tf_eval_omega(this, omega) result(rst)
    !! Evaluates the transfer function at the specified value of the
    !! Laplace variable \(s\).
    class(transfer_function), intent(in) :: this
        !! The transfer_function object.
    real(real64), intent(in) :: omega
        !! The frequency, in rad/s, at which to evaluate the transfer 
        !! function.
    complex(real64) :: rst
        !! The value of the transfer function.

    ! Parameters
    complex(real64), parameter :: j = (0.0d0, 1.0d0)

    ! Local Variables
    complex(real64) :: s

    ! Process
    s = j * omega
    rst = this%tf_eval_s(s)
end function

! ------------------------------------------------------------------------------
function tf_poles(this, err) result(rst)
    !! Computes the poles of the transfer function.
    class(transfer_function), intent(in) :: this
        !! The transfer_function object.
    class(errors), intent(inout), optional, target :: err
        !! An error handling object.
    complex(real64), allocatable, dimension(:) :: rst
        !! The poles of the transfer function.

    ! Process
    rst = this%X%roots(err = err)
end function

! ------------------------------------------------------------------------------
function tf_zeros(this, err) result(rst)
    !! Computes the zeros of the transfer function.
    class(transfer_function), intent(in) :: this
        !! The transfer function object.
    class(errors), intent(inout), optional, target :: err
        !! An error handling object.
    complex(real64), allocatable, dimension(:) :: rst
        !! The zeros of the transfer function.

    ! Process
    rst = this%Y%roots(err = err)
end function

! ------------------------------------------------------------------------------
function tf_to_ccf_statespace(this) result(rst)
    !! Converts a transfer_function type into a controllable canonical form
    !! state_space type.  See 
    !! [this](https://en.wikipedia.org/wiki/State-space_representation) article
    !! for a description of this form.
    class(transfer_function), intent(in) :: this
        !! The transfer_function to convert.
    type(state_space) :: rst
        !! The resulting state-space object.

    ! Local Variables
    integer(int32) :: i, order, n, norder
    real(real64) :: a

    ! Process
    order = this%X%order()
    n = order + 1
    allocate(rst%A(order, order), rst%B(order, 1), rst%C(1, order), &
        rst%D(1, 1), source = 0.0d0)
    a = this%X%get(n)
    do i = 1, order
        rst%A(order,i) = -this%X%get(i) / a
    end do
    do i = 1, order - 1
        rst%A(i,i+1) = 1.0d0
    end do
    rst%B(order, 1) = 1.0d0

    norder = this%Y%order()
    do i = 1, min(norder + 1, order)
        rst%C(1,i) = this%Y%get(i) / a
    end do
end function

! ------------------------------------------------------------------------------
function tf_to_ocf_statespace(this) result(rst)
    !! Converts a transfer_function type into an observable canonical form
    !! state_space type.  See 
    !! [this](https://en.wikipedia.org/wiki/State-space_representation) article
    !! for a description of this form.
    class(transfer_function), intent(in) :: this
        !! The transfer_function to convert.
    type(state_space) :: rst
        !! The resulting state-space object.

    ! Local Variables
    integer(int32) :: i, order, n, norder
    real(real64) :: a

    ! Process
    order = this%X%order()
    n = order + 1
    allocate(rst%A(order, order), rst%B(order, 1), rst%C(1, order), &
        rst%D(1, 1), source = 0.0d0)
    a = this%X%get(n)
    do i = 1, order
        rst%A(i,order) = -this%X%get(i) / a
    end do
    do i = 1, order - 1
        rst%A(i+1,i) = 1.0d0
    end do

    norder = this%Y%order()
    do i = 1, min(norder + 1, order)
        rst%B(i,1) = this%Y%get(i) / a
    end do

    rst%C(1,order) = 1.0d0
end function

! ******************************************************************************
! OPERATORS
! ------------------------------------------------------------------------------
function tf_tf_mult(x, y) result(rst)
    !! Multiplies two transfer functions.
    class(transfer_function), intent(in) :: x
        !! The left-hand-side argument.
    class(transfer_function), intent(in) :: y
        !! The right-hand-side argument.
    type(transfer_function) :: rst
        !! The resulting transfer function.

    ! Process
    rst%Y = x%Y * y%Y
    rst%X = x%X * y%X
end function

! ------------------------------------------------------------------------------
function poly_tf_mult(x, y) result(rst)
    !! Multiplies a polynomial and a transfer function to result in a new
    !! transfer function.
    class(polynomial), intent(in) :: x
        !! The left-hand-side argument.
    class(transfer_function), intent(in) :: y
        !! The right-hand-side argument.
    type(transfer_function) :: rst
        !! The resulting transfer function.
    
    ! Process
    rst%Y = x * y%Y
    rst%X = y%X
end function

! ------------------------------------------------------------------------------
function tf_poly_mult(x, y) result(rst)
    !! Multiplies a transfer function and a polynomial to result in a new
    !! transfer function.
    class(transfer_function), intent(in) :: x
        !! The left-hand-side argument.
    class(polynomial), intent(in) :: y
        !! The right-hand-side argument.
    type(transfer_function) :: rst
        !! The resulting transfer function.

    ! Process
    rst%Y = x%Y * y
    rst%X = x%X
end function

! ------------------------------------------------------------------------------
function tf_scalar_mult(x, y) result(rst)
    !! Multiplies a transfer function by a scalar value.
    class(transfer_function), intent(in) :: x
        !! The left-hand-side argument.
    real(real64), intent(in) :: y
        !! The right-hand-side argument.
    type(transfer_function) :: rst
        !! The resulting transfer function.

    ! Process
    rst%Y = y * x%Y
    rst%X = x%X
end function

! ------------------------------------------------------------------------------
function scalar_tf_mult(x, y) result(rst)
    !! Multiplies a transfer function by a scalar value.
    real(real64), intent(in) :: x
        !! The left-hand-side argument.
    class(transfer_function), intent(in) :: y
        !! The right-hand-side argument.
    type(transfer_function) :: rst
        !! The resulting transfer function.

    ! Process
    rst%Y = x * y%Y
    rst%X = y%X
end function

! ******************************************************************************
! LTI SOLVERS
! ------------------------------------------------------------------------------
function lti_solve(mdl, u, t, ic, solver, args, err) result(rst)
    !! Solves the LTI system given by the specified state space model.
    class(state_space), intent(in) :: mdl
        !! The state_space model to solve.
    procedure(ss_excitation), pointer, intent(in) :: u
        !! The routine used to compute the excitation vector.
    real(real64), intent(in), dimension(:) :: t
        !! The time points at which to compute the solution.  The array must
        !! have at least 2 values; however, more may be specified.  If only
        !! 2 values are specified, the integrator will compute the solution at
        !! those points, but it will also return any intermediate integration
        !! steps that may be required.  However, if more than 2 points are
        !! given, the integrator will return the solution values only at the
        !! specified time points.
    real(real64), intent(in), dimension(:) :: ic
        !! The initial condition vector.  This array must be the same size as
        !! the number of state variables.
    class(ode_integrator), intent(in), optional, target :: solver
        !! The ODE solver to utilize.  If not specified, the default solver
        !! is a 4th/5th order Runge-Kutta integrator.
    class(*), intent(inout), optional :: args
        !! An optional container for arguments to pass to the excitation
        !! routine.
    class(errors), intent(inout), optional, target :: err
        !! An error handling object.
    real(real64), allocatable, dimension(:,:) :: rst
        !! The solution.  The time points at which the solution was evaluated
        !! are stored in the first column and the output(s) are stored in the
        !! remaining column(s).

    ! Local Variables
    integer(int32) :: i, n, npts, flag, nInputs, nOutputs
    real(real64), allocatable, dimension(:) :: uv
    real(real64), allocatable, dimension(:,:) :: sol
    type(argument_container) :: container
    class(errors), pointer :: errmgr
    type(errors), target :: deferr
    class(ode_integrator), pointer :: integrator
    type(runge_kutta_45), target :: defaultIntegrator
    type(ode_container) :: odeMdl
    
    ! Initialization
    if (present(err)) then
        errmgr => err
    else
        errmgr => deferr
    end if
    container%excitation => u
    container%model = mdl
    container%has_user_args = present(args)
    if (present(args)) allocate(container%user_args, source = args)
    n = size(mdl%A, 1)
    nInputs = size(mdl%B, 2)
    nOutputs = size(mdl%C, 1)

    ! Input Checking
    if (size(ic) /= n) then
        call report_array_size_error("lti_solve_statespace", "ic", n, &
            size(ic), errmgr)
        return
    end if
    
    ! Set up the integrator
    if (present(solver)) then
        integrator => solver
    else
        integrator => defaultIntegrator
    end if
    odeMdl%fcn => ode_solver_routine

    ! Call the solver
    call integrator%solve(odeMdl, t, ic, args = container, err = errmgr)
    if (errmgr%has_error_occurred()) return

    ! Get the output from the solver
    sol = integrator%get_solution()
    npts = size(sol, 1)
    allocate(rst(npts, nOutputs + 1), uv(nInputs), stat = flag, source = 0.0d0)
    if (flag /= 0) then
        call report_memory_error("lti_solve_statespace", flag, errmgr)
        return
    end if

    ! Compute: C * x + D * u
    do i = 1, npts
        call u(sol(i,1), uv, args)
        rst(i,1) = sol(i,1)
        rst(i,2:) = matmul(mdl%C, sol(i,2:)) + matmul(mdl%D, uv)
    end do
end function

! ----------
subroutine ode_solver_routine(t, x, dxdt, args)
    ! The routine called by the LTI solver
    real(real64), intent(in) :: t, x(:)
    real(real64), intent(out) :: dxdt(:)
    class(*), intent(inout), optional :: args

    ! Local Variables
    integer(int32) :: n, p
    real(real64) :: nan
    real(real64), allocatable, dimension(:) :: u

    ! Initialization
    nan = ieee_value(nan, IEEE_QUIET_NAN)
    
    ! Process
    select type (args)
    class is (argument_container)
        ! Evaluate the excitation vector at t
        n = size(args%model%B, 2)
        allocate(u(n), source = 0.0d0)
        if (args%has_user_args) then
            call args%excitation(t, u, args = args%user_args)
        else
            call args%excitation(t, u)
        end if

        ! Evaluate the model
        dxdt = matmul(args%model%A, x) + matmul(args%model%B, u)
    class default
        dxdt = nan
    end select
end subroutine

! ------------------------------------------------------------------------------
end module